552 research outputs found

    A late, infrared flash from the afterglow of GRB 050319

    Full text link
    We report the detection of a bright, near-infrared flash from the afterglow of GRB 050319, 6.15 hours after the burst. The IR flash faded rapidly from J=13.12 mag. to J > 15.5 mag. in about 4 minutes. There are no reported simultaneous observations at other wavelengths making it an unique event. We study the implications of its late timing in the context of current theoretical models for GRB afterglows.Comment: Accepted in ApJ (Letters

    High Confidence Testing for Instrumentation System-on-Chip with Unknown-Good-Yield

    Get PDF
    SoCs are in general built with embedded IP cores, each of which is procured from different IP providers with no prior information on known-good-yield (KGY). In practice, partial testing is a practical choice for assuring the yield of the product under the stringent time-to-market requirements. Therefore, a proper sampling technique is a key to high confidence testing and cost effectiveness. Based on previous research, this paper proposes a novel statistical testing technique for increasingly hybrid integrated systems fabricated on a single silicon die with no a-priori empirical yield data. This problem is referred to as the unknown-good-yield (UKGY) problem. The proposed testing method, referred to as regressive testing (RegT) in this paper, exploits another way around by using parameters (referred to as assistant variables (AV)) that are employed to evaluate the yields of randomly sampled SoCs and thereby estimating the good yield by using a regression analysis method with regard to confidence intervals. Numerous simulations are conducted to demonstrate the efficiency and effectiveness of the proposed RegT in comparison to characterization-based testing methods

    Modeling and Analysis of Soft-Test/Repair for CCD-Based Digital X-Ray Systems

    Get PDF
    Modern X-ray imaging systems evolve toward digitization for reduced cost, faster time-to-diagnosis, and improved diagnostic confidence. For the digital X-ray systems, charge coupled device (CCD) technology is commonly used to detect and digitize optical X-ray image. This paper presents a novel soft-test/repair approach to overcome the defective pixel problem in CCD-based digital X-ray systems through theoretical modeling and analysis of the test/repair process. There are two possible solutions to cope with the defective pixel problem in CCDs: one is the hard-repair approach and another is the proposed soft-test/repair approach. Hard-repair approach employs a high-yield, expensive reparable CCD to minimize the impact of hard defects on the CCD, which occur in the form of noise propagated through A/D converter to the frame memory. Therefore, less work is needed to filter and correct the image at the end-user level while it maybe exceedingly expensive to practice. On the other hand, the proposed soft-test/repair approach is to detect and tolerate defective pixels at the digitized image level; thereby, it is inexpensive to practice and on-line repair can be done for noninterrupted service. It tests the images to detect the detective pixels and filter noise at the frame memory level and caches them in a flash memory in the controller for future repair. The controller cache keeps accumulating all the noise coordinates and preprocesses the incoming image data from the A/D converter by repairing them. The proposed soft-test/repair approach is particularly devised to facilitate hardware level implementation ultimately for real-time telediagnosis. Parametric simulation results demonstrate the speed and virtual yield enhancement by using the proposed approach; thereby highly reliable, yet inexpensive, soft-test/repair of CCD-based digital X-ray systems can be ultimately realized

    GASP XVIII: Star formation quenching due to AGN feedback in the central region of a jellyfish galaxy

    Get PDF
    We report evidence for star formation quenching in the central 8.6 kpc region of the jellyfish galaxy JO201 which hosts an active galactic nucleus, while undergoing strong ram pressure stripping. The ultraviolet imaging data of the galaxy disk reveal a region with reduced flux around the center of the galaxy and a horse shoe shaped region with enhanced flux in the outer disk. The characterization of the ionization regions based on emission line diagnostic diagrams shows that the region of reduced flux seen in the ultraviolet is within the AGN-dominated area. The CO J2−1_{2-1} map of the galaxy disk reveals a cavity in the central region. The image of the galaxy disk at redder wavelengths (9050-9250 \overset{\lower.5em\circ}{\mathrm{A}}) reveals the presence of a stellar bar. The star formation rate map of the galaxy disk shows that the star formation suppression in the cavity occurred in the last few 108^8 yr. We present several lines of evidence supporting the scenario that suppression of star formation in the central region of the disk is most likely due to the feedback from the AGN. The observations reported here make JO201 a unique case of AGN feedback and environmental effects suppressing star formation in a spiral galaxy.Comment: Author's accepted manuscrip

    Environmental-Based Characterization of SoC-Based Instrumentation Systems for Stratified Testing

    Get PDF
    This paper proposes a novel environmental-based method for evaluating the good yield rate (GYR) of systems-on-chip (SoC) during fabrication. Testing and yield evaluation at high confidence are two of the most critical issues for the success of SoC as a viable technology. The proposed method relies on different features of fabrication, which are quantified by the so-called Fabrication environmental parameters (EPs). EPs can be highly correlated to the yield, so they are analyzed using statistical methods to improve its accuracy and ultimately direct the test process to an efficient execution. The novel contributions of the proposed method are: 1) to establish an adequate theoretical foundation for understanding the fabrication process of SoCs together with an assurance of the yield at a high confidence level and 2) to ultimately provide a realistic approach to SoC testing with an accurate yield evaluation. Simulations are provided to demonstrate that the proposed method significantly improves the confidence interval of the estimated yield as compared with existing testing methodologies such as random testing (RT)

    Ultraviolet imaging observations of three jellyfish galaxies: Star formation suppression in the centre and ongoing star formation in stripped tails

    Full text link
    Spiral galaxies undergo strong ram-pressure effects when they fall into the galaxy cluster potential. As a consequence, their gas is stripped to form extended tails within which star formation can happen, giving them the typical jellyfish appearance. The ultraviolet imaging observations of jellyfish galaxies provide an opportunity to understand ongoing star formation in the stripped tails. We report the ultraviolet observations of the jellyfish galaxies JW39, JO60, JO194 and compare with observations in optical continuum and Hα\mathrm{H}{\alpha}. We detect knots of star formation in the disk and tails of the galaxies and find that their UV and Hα\alpha flux are well correlated. The optical emission line ratio maps of these galaxies are used to identify for every region the emission mechanism, due to either star formation, LINER or a mix of the two phenomena. The star-forming regions in the emission line maps match very well with the regions having significant UV flux. The central regions of two galaxies (JW39, JO194) show a reduction in UV flux which coincides with composite or LINER regions in the emission line maps. The galaxies studied here demonstrate significant star formation in the stripped tails, suppressed star formation in the central regions and present a possible case of accelerated quenching happening in jellyfish galaxies.Comment: Accepted for publication in MNRA

    The role of environment on quenching, star formation and AGN activity

    Get PDF
    Galaxies undergoing ram pressure stripping in clusters are an excellent opportunity to study the effects of environment on both the AGN and the star formation activity. We report here on the most recent results from the GASP survey. We discuss the AGN-ram pressure stripping connection and some evidence for AGN feedback in stripped galaxies. We then focus on the star formation activity, both in the disks and the tails of these galaxies, and conclude drawing a picture of the relation between multi-phase gas and star formation.Comment: Proceedings of the IAU Symposium 359 "Galaxy evolution and feedback across different environments", editors T. Storchi-Bergmann, R. Overzier, W. Forman & R. Riffel - final versio

    GASP XXIII: a jellyfish galaxy as an astrophysical laboratory of the baryonic cycle

    Get PDF
    © 2019. The American Astronomical Society. All rights reserved. With MUSE, Chandra, VLA, ALMA, and UVIT data from the GASP program, we study the multiphase baryonic components in a jellyfish galaxy (JW100) with a stellar mass 3.2 × 1011 M o hosting an active galactic nucleus (AGN). We present its spectacular extraplanar tails of ionized and molecular gas, UV stellar light, and X-ray and radio continuum emission. This galaxy represents an excellent laboratory to study the interplay between different gas phases and star formation and the influence of gas stripping, gas heating, and AGNs. We analyze the physical origin of the emission at different wavelengths in the tail, in particular in situ star formation (related to Hα, CO, and UV emission), synchrotron emission from relativistic electrons (producing the radio continuum), and heating of the stripped interstellar medium (ISM; responsible for the X-ray emission). We show the similarities and differences of the spatial distributions of ionized gas, molecular gas, and UV light and argue that the mismatch on small scales (1 kpc) is due to different stages of the star formation process. We present the relation Hα-X-ray surface brightness, which is steeper for star-forming regions than for diffuse ionized gas regions with a high [O i]/Hα ratio. We propose that ISM heating due to interaction with the intracluster medium (either for mixing, thermal conduction, or shocks) is responsible for the X-ray tail, observed [O i] excess, and lack of star formation in the northern part of the tail. We also report the tentative discovery in the tail of the most distant (and among the brightest) currently known ULX, a pointlike ultraluminous X-ray source commonly originating in a binary stellar system powered by either an intermediate-mass black hole or a magnetized neutron star

    Star-Forming, Rotating Spheroidal Galaxies in the GAMA and SAMI Surveys

    Get PDF
    The Galaxy And Mass Assembly (GAMA) survey has morphologically identified a class of ‘Little Blue Spheroid’ (LBS) galaxies whose relationship to other classes of galaxies we now examine in detail. Considering a sample of 868 LBSs, we find that such galaxies display similar but not identical colours, specific star formation rates, stellar population ages, mass-to-light ratios, and metallicities to Sd-Irr galaxies. We also find that LBSs typically occupy environments of even lower density than those of Sd-Irr galaxies, where ∌65 per cent of LBS galaxies live in isolation. Using deep, high-resolution imaging from VST KiDS and the new Bayesian, 2D galaxy profile modelling code PROFIT, we further examine the detailed structure of LBSs and find that their SĂ©rsic indices, sizes, and axial ratios are compatible with those of low-mass elliptical galaxies. We then examine SAMI Galaxy survey integral field emission line kinematics for a subset of 62 LBSs and find that the majority (42) of these galaxies display ordered rotation with the remainder displaying disturbed/non-ordered dynamics. Finally, we consider potential evolutionary scenarios for a population with this unusual combination of properties, concluding that LBSs are likely formed by a mixture of merger and accretion processes still recently active in low-redshift dwarf populations. We also infer that if LBS-like galaxies were subjected to quenching in a rich environment, they would plausibly resemble cluster dwarf ellipticals
    • 

    corecore